Sains Malaysiana
52(11)(2023): 3273-3292
http://doi.org/10.17576/jsm-2023-5211-19
Parametric Bootstrap
Confidence Interval Estimation for the Percentile and Difference between the
Percentiles of Delta-Lognormal Distributions with Application to Rainfall Data
in Thailand
(Anggaran Selang
Keyakinan Parametrik Butstrap untuk Persentil dan Perbezaan antara Peratus
Taburan Delta-Lognormal dengan Aplikasi pada Data Hujan di Thailand)
WARISA THANGJAI1,
SA-AAT NIWITPONG2,* & SUPARAT NIWITPONG2
1Department of
Statistics, Faculty of Science, Ramkhamhaeng University, 10240, Bangkok,
Thailand
2Department of Applied
Statistics, Faculty of Applied Science, King Mongkut's University of Technology
North Bangkok, 10800, Bangkok, Thailand
Received: 22 November 2022/Accepted: 24 October 2023
Abstract
In
Thailand, flooding often occurs during the summer monsoon when many tropical
storms affect the country. The motivation of this study was to plan for and
mitigate the damage caused by flooding in the future. The confidence interval
(CI) for the percentile of a precipitation dataset can be used to estimate the
intensity of rainfall in a particular area whereas the CI for the difference
between the percentiles of two datasets can be used to compare the rainfall
intensities in two areas. To this end, the performances of several approaches
to estimate the CI for the percentile and difference between the percentiles of
delta-lognormal distributions were constructed and compared. These estimates
were constructed based on the Bayesian (BS) and parametric bootstrap (PB)
approaches, as well as two fiducial generalized confidence interval (FGCI)
approaches. The performances of the methods were evaluated using Monte Carlo
simulation, the results of which indicate that the PB
approach for both CIs performed the best in all scenarios tested. Its
suitability was confirmed via two illustrative examples using daily rainfall
datasets for Chiang Mai and Lampang provinces in Thailand.
Keywords: Bayesian; delta-lognormal; fiducial generalized
confidence interval; parametric bootstrap; rainfall
Abstrak
Di Thailand, banjir sering
berlaku semasa monsun musim panas apabila banyak ribut tropika menjejaskan
negara. Motivasi kajian ini adalah untuk merancang dan mengurangkan kerosakan
akibat banjir pada masa hadapan. Selang keyakinan (CI) untuk persentil set data
titisan boleh digunakan untuk menganggarkan keamatan curahan hujan di kawasan
tertentu manakala CI untuk perbezaan antara persentil dua set data boleh
digunakan untuk membandingkan keamatan curahan hujan di dua kawasan. Untuk
tujuan ini, prestasi beberapa pendekatan untuk menganggarkan CI bagi persentil
dan perbezaan antara persentil taburan delta-lognormal telah dibina dan
dibandingkan. Anggaran ini telah dibina berdasarkan pendekatan Bayesian (BS)
dan parametrik butstrap (PB) serta dua pendekatan selang keyakinan teritlak
fidusial (FGCI). Prestasi kaedah telah dinilai menggunakan simulasi Monte Carlo
yang hasilnya menunjukkan bahawa pendekatan PB untuk kedua-dua CI menunjukkan
prestasi terbaik dalam semua senario yang diuji. Kesesuaiannya disahkan melalui
dua contoh ilustrasi menggunakan set data curahan hujan harian untuk wilayah
Chiang Mai dan Lampang di Thailand.
Kata kunci: Bayesian; curahan
hujan; delta-lognormal; parametrik butstrap; selang keyakinan teritlak fidusial
REFERENCES
Aitchison, J. & Brown, J.A.C. 1966. The Lognormal
Distribution with Special Reference to Its Uses in Economics. England:
Cambridge University Press.
Balakrishnan, N., Hayter,
A.J., Liu, W. & Kiatsupaibul, S. 2015. Confidence intervals for quantiles
of a two-parameter exponential distribution under progressive type-II
censoring. Communications in Statistics - Theory and Methods 44(14):
3001-3010.
Chakraborti, S. & Li, J.
2007. Confidence interval estimation of a normal percentile. The American
Statistician 61(4): 331-336.
Chen, S., Li, Y.X., Shin, J.Y. & Kim, T.W. 2016.Constructing
confidence intervals of extreme rainfall quantiles using Bayesian, bootstrap,
and profile likelihood approaches. Science China Technological Sciences 59: 573-585.
Dunn, P.K. 2001. Bootstrap confidence
intervals for predicted rainfall quantiles. International Journal of
Climatology 21(1): 89-94.
Hannig, J., Lidong, E., Abdel-Karim, A.
& Iyer H. 2006. Simultaneous fiducial generalized confidence intervals for
ratios of means of lognormal distributions. Austrian Journal of Statistics 35: 261-269.
Hasan, M.S. & Krishnamoorthy, K. 2018.
Confidence intervals for the mean and a percentile based on zero-inflated
lognormal data. Journal of Statistical Computation and Simulation 88(8):
1499-1514.
Hayter, A.J. 2014. Simultaneous confidence
intervals for several quantiles of an unknown distribution. The American
Statistician 68(1): 56-62.
Jaithun, M., Niwitpong, S-A. & Niwitpong, S. 2018. Estimating
the difference in the percentiles of two delta-lognormal independent
populations. Studies in Computational Intelligence 808: 402-411.
Lu, F., Wang, H., Yan, D.H., Zhang, D.D. & Xiao, W.H. 2013.
Application of profile likelihood function to the uncertainty analysis of
hydrometeorological extreme inference. Science China Technological Sciences 56: 3151-3160.
Malekzadeh, A. & Jafari, A.A. 2018. Testing
equality of quantiles of two-parameter exponential distributions under
progressive type II censoring. Journal of Statistical Theory and Practice 12(4): 776-793.
Malekzadeh, A. &
Kharrati-Kopaei, M. 2020. Simultaneous confidence intervals for the quantile
differences of several two-parameter exponential distributions under the
progressive type II censoring scheme. Journal of Statistical Computation and
Simulation 90(11): 2037-2056.
Md, A.K., Saleh, E.,
Hassanein, K.M. & Ali, M.M. 1988. Estimation and testing of hypotheses
about the quantile function of the normal distribution. Journal of
Information and Optimization Sciences 9(1): 85-98.
Mandel, M. & Betensky, R.A. 2008. Simultaneous
confidence intervals based on the percentile bootstrap approach. Computational
Statistics and Data Analysis 52: 2158-2165.
Maneerat, P., Nakjai, P. & Niwitpong, S-A. 2022. Bayesian
interval estimations for the mean of delta-three parameter lognormal
distribution with application to heavy rainfall data. PLoS ONE 17(4):
e0266455.
Maneerat, P., Niwitpong, S-A. & Niwitpong, S. 2021. Bayesian
confidence intervals for a single mean and the difference between two means of
delta-lognormal distributions. Communications in Statistics-Simulation and
Computation 50: 2906-2934.
Navruz, G. & Özdemir, A.F. 2018. Quantile estimation and
comparing two independent groups with an approach based on percentile
bootstrap. Communications in Statistics - Simulation and Computation 47(7): 2119-2138.
Padgett, W.J. & Tomlinson, M.A. 2003. Lower
confidence bounds for percentiles of Weibull and Birnbaum-Saunders
distributions. Journal of Statistical Computation and Simulation 73(6):
429-443.
Reiss, R.D. &
Ruschendorf, L. 1976. On Wilks’ distribution-free confidence intervals for
quantile intervals. Journal of the American Statistical Association 71(356): 940-944.
Reis, Jr. D.S. & Stedinger, J.R. 2005. Bayesian MCMC flood
frequency analysis with historical information. Journal of Hydrology 313: 97-116.
Serinaldi, F. 2009. Assessing the
applicability of fractional order statistics for computing
confidence intervals for extreme quantiles. Journal of Hydrology 376: 528-541.
Smith, P. & Sedransk, J.
1983. Lower bounds for confidence coefficients for confidence intervals for
finite population quantiles. Communications in Statistics - Theory and
Methods 12(12): 1329-1344.
Thangjai, W. & Niwitpong, S. 2022.
Bootstrap confidence intervals for common signal-to-noise ratio of
two-parameter exponential distributions. Statistics, Optimization and
Information Computing 10: 858-872.
Thangjai, W. & Niwitpong, S-A. 2020.
Confidence intervals for difference of signal-to-noise ratios of two-parameter
exponential distributions. International Journal of Statistics and Applied
Mathematics 5(3): 47-54.
Thangjai, W., Niwitpong, S-A. & Niwitpong, S. 2022. Estimation of common percentile of rainfall datasets in
Thailand using delta-lognormal distributions. PeerJ 10: e14498.
Thangjai, W., Niwitpong, S-A. & Niwitpong, S.
2020. Confidence intervals for the common coefficient of variation of rainfall
in Thailand. PeerJ 8: e10004.
Tian, W., Yang, Y. & Tong, T. 2022.
Confidence intervals based on the difference of medians for independent
log-normal distributions. Mathematics 10: 2989.
Yosboonruang, N. & Niwitpong, S. 2020. Statistical inference
on the ratio of delta-lognormal coefficients of variation. Applied Science
and Engineering Progress 14(3): 489-502.
Yosboonruang, N., Niwitpong, S-A. & Niwitpong, S. 2022.
Bayesian computation for the common coefficient of variation of delta-lognormal
distributions with application to common rainfall dispersion in Thailand. PeerJ 10: e12858.
Yosboonruang, N., Niwitpong, S-A. & Niwitpong, S. 2020. The
Bayesian confidence intervals for measuring the difference between dispersions
of rainfall in Thailand. PeerJ 8: e9662.
Yosboonruang, N., Niwitpong, S-A. & Niwitpong, S. 2019.
Measuring the dispersion of rainfall using Bayesian confidence intervals for
coefficient of variation of delta-lognormal distribution: A study from
Thailand. PeerJ 7(271): e7344.
Zhang, Q., Xu, J., Zhao, J., Liang, H. & Li, X. 2022.
Simultaneous confidence intervals for ratios of means of zero-inflated
log-normal populations. Journal of Statistical Computation and Simulation 92(6): 1113-1132.
*Corresponding author; email: sa-aat.n@sci.kmutnb.ac.th
|